数学分析原理(第一卷)txt,chm,pdf,epub,mobi下载 作者:Г.М.菲赫金哥尔茨 出版社: 高等教育出版社 副标题: 数学分析原理 译者:吴亲仁/陆秀丽/丁寿田 出版年: 2013-3 页数: 363 定价: 59.00元 装帧: 平装 丛书: 俄罗斯数学教材选译系列 ISBN: 9787040345261 内容简介 · · · · · ·《数学分析原理(第一卷)(第9版)》是г. м. 菲赫金哥尔茨继《微积分学教程》三卷本后的又一部关于数学分析的经典著作,是作者总结多年教学经验编写而成的。 《数学分析原理(第一卷)(第9版)》针对大学数学系一二年级的分析课程,因此分两卷出版。第一卷内容包括:实数、一元函数、极限论、一元连续函数、一元函数的微分法、微分学的基本定理、应用导数来研究函数、多元函数、多元函数的微分学、微积分的几何应用和力学应用,书中专列一章讲述数学分析基本观念发展简史;第二卷内容包括:数项级数、函数序列及函数级数、反常积分、带参变量的积分、隐函数和函数行列式、线积分、二重积分、曲面面积和面积分、三重积分、傅里叶级数等,书后附有“数学分析进一步发展概况”的附录。 《数学分析原理(第一卷)(第9版)》可供各级各类高等学校的数学分析与高等数学课程作为教学参考书,是数学分析教师极好... 作者简介 · · · · · ·作者序言 《数学分析原理》是作为大学数学系一二年级学生的分析教科书而编写的; 因此也就把书分成两卷. 在编写本书时, 广泛地采用了我的三卷本《微积分学教程》的材料; 但为了要使本书接近于正式的数学分析教学大纲与讲课的实际可能性, 我已把这三卷中包含的材料加以精简与修改. 我给自己定下的任务是这样的: 1. 我认为在数学分析原理中主要的一个任务是要做到叙述上的系统性与在可能范围内的严格性. 为了使给予学生的知识有一定的系统, 我认为对于教科书来说,材料的叙述有必要按照逻辑的顺序. 虽然如此, 但教本这样的编排仍然使讲课者在个别的地方——从教学法着眼——有可能放弃严格的系统性(也许, 甚至使他更容易获得这种可能). 例如, 我自己在讲课中通常把那种对于初学者困难的东西, 如实数理论、收敛性原理或者连续函数的性质都稍稍延后. 2. 同时, 数学分析教程对于... 目录 · · · · · ·《数学分析原理(第一卷)(第9版)》《俄罗斯数学教材选译》序 序言 第一章实数 1 x1. 实数集合及其有序化 1 1. 前言 1 · · · · · ·() 《数学分析原理(第一卷)(第9版)》 《俄罗斯数学教材选译》序 序言 第一章实数 1 x1. 实数集合及其有序化 1 1. 前言 1 2. 无理数定义 2 3. 实数集合的有序化 4 4. 实数的无尽十进小数的表示法 5 5. 实数集合的连续性 7 6. 数集合的界 8 x2. 实数的四则运算 10 7. 实数的和的定义及其性质 10 8. 对称数 绝对值 11 9. 实数的积的定义及其性质 13 x3. 实数的其他性质及其应用 14 10. 根的存在性 具有有理指数的乘幂 14 11. 具有任何实指数的乘幂 16 12. 对数 17 13. 线段的测量 18 . ii 目录 第二章一元函数 20 x1. 函数概念 20 14. 变量 20 15. 变量的变域 21 16. 变量间的函数关系 例题 21 17. 函数概念的定义 22 18. 函数的解析表示法 24 19. 函数的图形 25 20. 以自然数为变元的函数 26 21. 历史的附注 28 x2. 几类最重要的函数 29 22. 初等函数 29 23. 反函数的概念 32 24. 反三角函数 33 25. 函数的叠置 结束语 36 第三章极限论 38 x1. 函数的极限 38 26. 历史的说明 38 27. 数列 38 28. 序列的极限定义 39 29. 无穷小量 41 30. 例 42 31. 无穷大量 44 32. 函数极限的定义 45 33. 函数极限的另一定义 47 34. 例 48 35. 单侧极限 53 x2. 关于极限的定理 54 36. 具有有限的极限的自然数变元的函数的性质 54 37. 推广到任意变量的函数情形 56 38. 在等式与不等式中取极限 57 39. 关于无穷小量的引理 58 40. 变量的算术运算 59 41. 未定式 61 42. 推广到任意变量的函数情形 63 43. 例 64 x3. 单调函数 67 44. 自然数变元的单调函数的极限 67 45. 例 69 46. 关于区间套的引理 70 47. 在一般情形下单调函数的极限 71 x4. 数e 73 48. 数e 看作序列的极限 73 49. 数e 的近似计算法 74 50. 数e 的基本公式 自然对数 76 x5. 收敛原理 78 51. 部分序列 78 52. 以自然数为变元的函数存在有限极限的条件 80 53. 任意变元的函数存在有限极限的条件 81 x6. 无穷小量与无穷大量的分类 83 54. 无穷小量的比较 83 55. 无穷小量的尺度 84 56. 等价的无穷小量 84 57. 无穷小量的主部的分离 86 58. 应用问题 86 59. 无穷大量的分类 88 第四章一元连续函数 89 x1. 函数的连续性(与间断点) 89 60. 函数在一点处的连续性的定义 89 61. 单调函数的连续性条件 91 62. 连续函数的算术运算 91 63. 初等函数的连续性 92 64. 连续函数的叠置 94 65. 几个极限的计算 94 66. 幂指数表达式 96 67. 间断点的分类 例子 97 x2. 连续函数的性质 98 68. 关于函数取零值的定理 98 69. 应用于解方程 100 iv 目录 70. 关于中间值的定理 101 71. 反函数的存在性 102 72. 关于函数的有界性的定理 103 73. 函数的最大值与最小值 104 74. 一致连续性的概念 105 75. 关于一致连续性的定理 106 第五章一元函数的微分法 108 x1. 导数及其计算 108 76. 动点速度的计算问题 108 77. 作曲线的切线的问题 109 78. 导数的定义 111 79. 计算导数的例 114 80. 反函数的导数 116 81. 导数公式汇集 117 82. 函数增量的公式 118 83. 计算导数的几个最简单法则 119 84. 复合函数的导数 121 85. 例 122 86. 单侧导数 124 87. 无穷导数 124 88. 特殊情况的例子 125 x2. 微分 126 89. 微分的定义 126 90. 可微性与导数存在之间的关系 127 91. 微分的基本公式及法则 129 92. 微分形式的不变性 130 93. 微分作为近似公式的来源 131 94. 微分在估计误差中的应用 132 x3. 高阶导数及高阶微分 133 95. 高阶导数的定义 133 96. 任意阶导数的普遍公式 134 97. 莱布尼茨公式 136 98. 高阶微分 138 99. 高阶微分形式不变性的破坏 139 第六章微分学的基本定理 140 x1. 中值定理 140 100. 费马定理 140 101. 罗尔定理 141 102. 有限增量定理 142 103. 导数的极限 144 104. 有限增量定理的推广 144 x2. 泰勒公式 145 105. 多项式的泰勒公式 145 106. 任意函数的展开式 147 107. 余项的其他形式 150 108. 已得的公式在初等函数上的应用 152 109. 近似公式 例 153 第七章应用导数来研究函数 157 x1. 函数的变化过程的研究 157 110. 函数为常数的条件 157 111. 函数为单调的条件 158 112. 极大及极小 必要条件 159 113. 第一法则 160 114. 第二法则 162 115. 函数的作图 163 116. 例 164 117. 高阶导数的应用 166 x2. 函数的最大值及最小值 167 118. 最大值及最小值的求法 167 119. 问题 168 x3. 未定式的定值法 169 型未定式 169 型未定式 172 122. 其他类型的未定式 173 第八章多元函数 176 x1. 基本概念 176 123. 变量之间的函数关系 例 176 124. 二元函数及其定义区域 177 125. m 维算术空间 179 126. m 维空间中的区域举例 181 127. 开区域及闭区域的一般定义 183 128. m 元函数 184 129. 多元函数的极限 186 130. 例 188 131. 累次极限 189 x2. 连续函数 191 132. 多元函数的连续性及间断 191 133. 连续函数的运算 193 134. 关于函数取零值的定理 194 135. 波尔查诺{ 魏尔斯特拉斯引理 195 136. 关于函数有界性的定理 196 137. 一致连续性 196 第九章多元函数的微分学 199 x1. 多元函数的导数与微分 199 138. 偏导数 199 139. 函数的全增量 200 140. 复合函数的导数 203 141. 例 204 142. 全微分 205 143. 一阶微分形式的不变性 207 144. 全微分在近似计算中的应用 209 145. 齐次函数 210 x2. 高阶导数与高阶微分 212 146. 高阶导数 212 147. 关于混合导数的定理 213 148. 高阶微分 216 149. 复合函数的微分 218 150. 泰勒公式 219 x3. 极值、最大值与最小值 220 151. 多元函数的极值 必要条件 220 152. 静止点的研究(二元函数的情况) 222 153. 函数的最大值与最小值 例子 225 154. 问题 227 第十章原函数(不定积分) 230 x1. 不定积分及其最简单的计算法 230 155. 原函数概念(及不定积分概念) 230 156. 积分与求面积问题 233 157. 基本积分表 234 158. 最简单的积分法则 235 159. 例 237 160. 换元积分法 238 161. 例 240 162. 分部积分法 242 163. 例 242 x2. 有理式的积分 244 164. 有限形式积分法问题的提出 244 165. 简单分式及其积分 245 166. 真分式的积分 246 167. 奥斯特罗格拉茨基的积分有理部分分出法 249 x3. 某些根式的积分法 251 168. 型根式的积分法 251 169. 二项式微分的积分法 252 170. r(x;pax2 + bx + c) 型根式的积分法 欧拉替换法 254 x4. 含有三角函数及指数函数的式子的积分法 258 171. 微分式r(sin x; cos x)dx 的积分法 258 172. 其他情形概述 260 x5. 椭圆积分 261 173. 定义 261 174. 化为典式 262 第十一章定积分 264 x1. 定积分定义及存在条件 264 175. 解决面积问题的另一途径 264 176. 定义 265 177. 达布和 267 178. 积分存在条件 269 179. 可积函数类别 270 x2. 定积分性质 272 180. 依有向区间的积分 272 181. 可用等式表出的性质 273 182. 可用不等式表出的性质 274 183. 定积分作为上限的函数 277 x3. 定积分的计算及变换 279 184. 用积分和的计算 279 185. 积分学基本公式 281 186. 定积分中变量替换公式 282 187. 定积分的分部积分法 283 188. 沃利斯公式 284 x4. 积分的近似计算 285 189. 梯形公式 285 190. 抛物线公式 287 191. 近似公式的余项 289 192. 例 291 第十二章积分学的几何应用及力学应用 293 x1. 面积及体积 293 193. 面积概念的定义 可求积区域 293 194. 面积的可加性 294 195. 面积作为极限 295 196. 以积分表出面积 296 197. 体积概念的定义及其性质 299 198. 以积分表出体积 301 x2. 弧长 305 199. 弧长概念的定义 305 200. 引理 307 201. 以积分表出弧长 308 202. 变弧及其微分 311 203. 空间曲线的弧长 313 x3. 力学及物理上的数量的计算 314 204. 定积分应用程式 314 205. 旋转面面积 316 206. 曲线的静矩及质心的求法 318 207. 平面图形的静矩及质心的求法 320 208. 力功 321 第十三章微分学的一些几何应用 323 x1. 切线及切面 323 209. 平面曲线的解析表示法 323 210. 平面曲线的切线 324 211. 切线的正方向 328 212. 空间曲线 329 213. 曲面的切面 331 x2. 平面曲线的曲率 332 214. 凹向 拐点 332 215. 曲率概念 334 216. 曲率圆及曲率半径 336 第十四章数学分析基本观念发展简史 339 x1. 微积分前史 339 217. 17 世纪与无穷小分析 339 218. 不可分素方法 339 219. 不可分素学说的进一步发展 341 220. 求最大及最小(极大极小) 切线作法 343 221. 借助运动学想法来作切线 345 222. 切线作法问题与求积问题的互逆性 345 223. 上述的总结 346 x2. 依萨克 牛顿(isaac newton, 1642 1727) 347 224. 流数计算法 347 225. 流数计算法的逆计算法 求积 349 226. 牛顿的\原理" 及极限理论的萌芽 351 227. 牛顿的奠基问题 351 x3. 莱布尼茨(gottfried wilhelm leibniz, 1646 1716) 352 228. 建立新计算法的初步 352 229. 最先刊行的微分学著作 353 230. 最先刊行的积分学著作 354 231. 莱布尼茨的其他著作 学派的建立 355 232. 莱布尼茨的奠基问题 355 233. 结尾语 356 索引 357 · · · · · · () |
讲的特别好
一本书写出自己想看的内容
大大点赞!
作者让我脑洞大开