《吉米多维奇数学分析习题集学习指引(第1册)》电子书下载

吉米多维奇数学分析习题集学习指引(第1册)txt,chm,pdf,epub,mobi下载
作者:沐定夷/谢惠民
出版社: 高等教育出版社
出版年: 2010-6
页数: 431
定价: 39.00元
装帧: 平装
丛书: 吉米多维奇数学分析习题集学习指引
ISBN: 9787040295313

内容简介 · · · · · ·

《吉米多维奇数学分析习题集学习指引(第1册)》是最为经典的微积分习题集,自20世纪50年代引进以来,对我国半个多世纪的微积分和高等数学的教与学产生了重大的影响。《吉米多维奇数学分析习题集学习指引(第1册)》是为该习题集的俄文2003年版的中译本编写的学习指引。全书分三册出版,第一册为分析引论和一元微分学,第二册为一元积分学与级数,第三册为多元微积分。《吉米多维奇数学分析习题集学习指引(第1册)》通过对习题集中的部分典型习题的讲解与分析。由浅入深、分层次、分类型地介绍微积分的解题思路,讲道理、讲方法,揭示出习题集中的丰富多彩的内容和结构。特别注重一法多用、一题多解和发展几何直观的形象思维,同时通过补注、命题等多种方式补充介绍与习题有关的背景知识和联系,不回避任何难点,为读者更有效地利用该习题集、掌握微积分的基本功提供适当的帮助。《吉米多维奇数学分析习题...




目录 · · · · · ·

使用说明
第一章 分析引论
1.1 实 数(习题1-40)
1.1.1 数学归纳法(习题1-10)
1.1.2 有理数集的分割(习题11-13)
1.1.3 确界的定义与性质(习题15-20)
· · · · · ·()
使用说明
第一章 分析引论
1.1 实 数(习题1-40)
1.1.1 数学归纳法(习题1-10)
1.1.2 有理数集的分割(习题11-13)
1.1.3 确界的定义与性质(习题15-20)
1.1.4 含有绝对值的不等式(习题21-30)
1.1.5 绝对误差和相对误差(习题31-40)
1.1.6 补注(习题5,14)
1.2 数列理论(习题41-150)
1.2.1 极限的定义与计算(习题41-57)
1.2.2 几个极限证明题(习题58-68)
1.2.3 与数e有关的习题(习题69-75(a),146-147)
1.2.4 单调有界数列收敛定理(习题77-81)
1.2.5 柯西收敛准则(习题82-88)
1.2.6 予列、聚点与上下极限(习题89-134)
1.2.7 柯西命题和施托尔茨定理(习题138-145)
1.2.8 迭代生成的数列(习题148-150)
1.2.9 补注(习题76,75(b),136-137,135)
1.3 函数的概念(习题151-236)
1.3.1 关于函数概念的基本训练(习题151-196)
1.3.2 拟合与插值(习题197-202)
1.3.3 复合函数(习题203-213.2)
1.3.4 单调性、反函数和奇偶性(习题214-232)
1.3.5 周期函数(习题233-236)
1.3.6 补注
1.4 函数的图像表示(习题237-380)
1.4.1 有理函数的图像(习题237-265)
1.4.2 无理函数、幂函数和初等超越函数的图像(习题266-324.2)
1.4.3 关于图像运算的一般规律(习题325-367)
1.4.4 反函数、用参数表示的函数和隐函数的图像(习题368-370.2)
1.4.5 极坐标系中的函数图像(习题371.1-371.3)
1.4.6 用函数图像求方程(组)的近似解(习题372-380)
1.4.7 补注
1.5 函数的极限(习题381-644)
1.5.1 有界性、确界和振幅(习题381-400)
1.5.2 函数极限的定义(习题401-407)
1.5.3 有理函数的极限计算(习题408-434)
1.5.4 无理函数的极限计算(习题435-470)
1.5.5 初等超越函数的极限计算(习题471-591,602,604-605)
1.5.6 杂题(习题592-601,603,613-636,641-644)
1.5.7 补注(习题606-612,637-640)
1.6 符号O(习题645-661)
1.7 函数的连续性(习题662-758)
1.7.1 连续性的定义(习题662-674)
1.7.2 连续性分析与作图(习题675-733)
1.7.3 连续函数的局部性质(习题734-747,749-750)
1.7.4 连续函数的整体性质(习题751,753-757)
1.7.5 补注(习题748,752,758)
1.8 反函数.由参数方程确定的函数(习题759-784)
1.8.1 反函数的存在性(习题759-766)
1.8.2 反函数的单值连续分支(习题767-779)
1.8.3 由参数方程确定的函数(习题780-784)
1.9 函数的一致连续性(习题785-808)
1.10 函数方程(习题809-820)
1.10.1 柯西方法(习题809-820)185
1.10.2 补注
第二章 一元微分学
2.1 显函数的导数(习题821-1033)
2.1.1 导数的定义(习题821-833)
2.1.2 导数的计算(习题834-989)
2.1.3 杂题(习题990-1023)
2.1.4 应用题(习题1024-1033)
2.2 反函数、用参数表示的函数和隐函数的导数(习题1034-1054)
2.2.1 反函数的导数(习题1034-1037)
2.2.2 用参数表示的函数的导数(习题1038-1047)
2.2.3 隐函数的导数(习题1048-1054)
2.3 导数的几何意义(习题1055-1082)
2.4 函数的微分(习题1083-1110)
2.5 高阶导数和微分(习题1111-1234)
2.5.1 显函数的高阶导数和微分的计算(习题1111-1139)
2.5.2 非显函数的高阶导数和微分的计算(习题1140-1150)
2.5.3 应用题(习题1151-1155)
2.5.4 高阶导数与微分计算(续)(习题1156-1185)
2.5.5 n阶导数与微分计算(习题118L1234)
2.6 罗尔定理.拉格朗日定理和柯西定理(习题1235-1267)
2.6.1 罗尔定理(习题1235-1243)
2.6.2 拉格朗日中值定理(习题1244-1251)
2.6.3 柯西中值定理(习题1252-1253)261
2.6.4 中值定理的其他应用(习题1254-1265)262
2.6.5 补注(习题1266-1267)
2.7 函数的递增与递减.不等式(习题1268-1297)
2.7.1 单调性分析(习题1268-1287)
2.7.2 不等式(习题1288-1295,1297)
2.7.3 补注(习题1296)
2.8 凹凸性.拐点(习题1298-1317)
2.8.1 凹凸性分析(习题1298-1310,1313)
2.8.2 与凹凸性有关的一些证明题(习题1311-1312,131L1317)
2.8.3 补注
2.9 不定式极限(习题1318-1375)
2.9.1 不定式计算Ⅰ(习题1318-1338,1358-1360,1367,1368(b))
2.9.2 不定式计算Ⅱ(习题1339-1357,1361-1366,1368(a),1369-1370)
2.9.3 杂题(习题1371-1375)
2.9.4 补注
2.10 泰勒公式(习题1376-1413)
2.10.1 泰勒公式计算(习题1376-1392)
2.10.2 若干证明题(习题1393)
2.10.3 近似计算与误差估计(习题1394-1397)
2.10.4 局部泰勒公式的一些应用(习题1398-1413)
2.11 函数的极值.函数的最大值和最小值(习题1414-1470)
2.11.1 极值的研究(习题1414-1428)
2.11.2 极值、最值和确界的计算(习题1429-1455)
2.11.3 不等式证明(习题1456)
2.11.4 偏差计算(习题1457-1461)
2.11.5 根的个数问题(习题1462-1470)
2.11.6 补注
2.12 根据特征点作函数图像(习题1471-1555)
2.12.1 有理函数的图像(习题1471-1483)
2.12.2 无理函数与初等超越函数的图像(习题1484-1530)
2.12.3 参数方程与隐函数方程表示的曲线(习题1531-1545)
2.12.4 极坐标系中的函数图像(习题1546-1550)
2.12.5 曲线族的图像(习题1551-1555)
2.12.6 补注
2.13 函数的极大值和极小值问题(习题1556-1590)
2.14 曲线相切.曲率圆.渐屈线(习题1591-1616)
2.15 方程的近似解(习题1617-1627)
附录一 1.4的图像参考答案
附录二 2.12的图像参考答案
附录三 命题索引
参考文献
· · · · · · ()

下载地址

发布者:同乐嗷呜咯哦YY

文件说明:zip / 解压密码:electro-lviv.com

迅雷下载:您需要先后,才能查看

网盘下载:您需要先后,才能查看

关于内容:内容自于互联网,如果发现有违规内容请联系管理员删除!

作者: 同乐嗷呜咯哦YY

同乐嗷呜咯哦YY

该用户很懒,还没有介绍自己。

15 条评论

发表评论

  1. 帘外人儿帘外人儿说道:
    1#

    一如既往地 好看

  2. JennyJenny说道:
    2#

    世界变得更立体。

  3. 边城GOD边城GOD说道:
    3#

    很不一样的体验

  4. 勤劳的小鸡勤劳的小鸡说道:
    4#

    为我提供了一个解看历史和现实的全新视角。

  5. 显示更多