For most of the last century, condensed matter physics has been dominated by band theory and Landau's symmetry breaking theory. In the last twenty years, however, there has been the emergence of a new paradigm associated with fractionalization, topological order, emergent gauge bosons and
fermions, and string condensation. These new physical concepts are so fundamental that th...
For most of the last century, condensed matter physics has been dominated by band theory and Landau's symmetry breaking theory. In the last twenty years, however, there has been the emergence of a new paradigm associated with fractionalization, topological order, emergent gauge bosons and
fermions, and string condensation. These new physical concepts are so fundamental that they may even influence our understanding of the origin of light and electrons in the universe. This book is a pedagogical and systematic introduction to the new concepts and quantum field theoretical methods in
condensed matter physics. It discusses many basic notions in theoretical physics, which underlie physical phenomena in nature, including a notion that unifies light and electrons. Topics covered are dissipative quantum systems, boson condensation, symmetry breaking and gapless excitations, phase
transitions, Fermi liquids, spin density wave states, Fermi and fractional statistics, quantum Hall effects, topological/quantum order, spin liquid and string condensation. Methods discussed include the path integral, Green's functions, mean-field theory, effective theory, renormalization group,
bosonization in one- and higher dimensions, non-linear sigma-model, quantum gauge theory, dualities, slave-boson theory, and exactly soluble models beyond one-dimension. This book is aimed at bringing students to the frontiers of research in condensed matter physics.
他的书必买,烧脑,值得珍藏
让人叹为观止。
受益匪浅!
一季一寂思年华,繁华落尽惹尘埃!