机器学习导论txt,chm,pdf,epub,mobi下载 作者:Ethen Alpaydin 出版社: 机械工业出版社 原作名: Introduction to Machine Learning 译者:范明/昝红英/牛常勇 出版年: 2009-6 页数: 272 定价: 39.00元 装帧: 平装 丛书: 计算机科学丛书 ISBN: 9787111265245 内容简介 · · · · · ·《机器学习导论》对机器学习的定义和应用实例进行了介绍,涵盖了监督学习。贝叶斯决策理论。参数方法、多元方法、维度归约、聚类、非参数方法、决策树。线性判别式、多层感知器,局部模型、隐马尔可夫模型。分类算法评估和比较,组合多学习器以及增强学习等。机器学习的目标是对计算机编程,以便使用样本数据或以往的经验来解决给定的问题。已经有许多机器学习的成功应用,包括分析以往销售数据来预测客户行为,人脸识别或语音识别,优化机器人行为以便使用最少的资源来完成任务,以及从生物信息数据中提取知识的各种系统。为了对机器学习问题和解进行统一的论述,《机器学习导论》讨论了机器学习在统计学、模式识别、神经网络。人工智能。信号处理、控制和数据挖掘等不同领域的应用。对所有学习算法都进行了解释,以便读者可以容易地将书中的公式转变为计算机程序。《机器学习导论》可作为高等院校计算机相关专业高年... 作者简介 · · · · · ·TOM M.Mitchell是卡内基梅隆大学的教授,讲授“机器(AAA)的主席:美国《Machine Leaming》杂志、国际机器学习年度会议(ICML)的创始人:多种技术杂志的撰稿人,曾发表过许多文章,出版过多本专著,是机器学习领域的著名学者。 目录 · · · · · ·出版者的话中文版序译者序前言致谢符号表第1章 绪论 1.1 什么是机器学习 1.2 机器学习的应用实例 1.2.1 学习关联性 1.2.2 分类 1.2.3 回归 1.2.4 非监督学习 1.2.5 增强学习 1.3 注释 1.4 相关资源 1.5 习题 1.6 参考文献第2章 监督学习 2.1 由实例学习类 2.2 VC维 2.3 概率逼近正确学习 2.4 噪声 2.5 学习多类 2.6 回归 2.7 模型选择与泛化 2.8 监督机器学习算法的维 2.9 注释 2.10 习题 2.11 参考文献第3章 贝叶斯决策定理 3.1 引言 3.2 分类 3.3 损失与风险 3.4 判别式函数 3.5 效用理论 3.6 信息值 3.7 贝叶斯网络 3.8 影响图 3.9 关联规则 3.10 注释 3.11 习题 3.12 参考文献第4章 参数方法 4.1 引言 4.2 最大似然估计 4.2.1 伯努利密度 4.2.2 多项密度 4.2.3 高斯(正态)密度 4.3 评价估计:偏倚和方差 4.4 贝叶斯估计 4.5 参数分类 4.6 回归 4.7 调整模型的复杂度:偏倚/方差两难选择 4.8 模型选择过程 4.9 注释 4.10 习题 4.11 参考文献第5章 多元方法 5.1 多元数据 5.2 参数估计 5.3 缺失值估计 5.4 多元正态分布 5.5 多元分类……第6章 维度旭纳第7章 聚类第8章 非参数方法第9章 决策树第10章 线性判别式第11章 多层感知器第12章 局部模型 第13章 隐马尔可夫模型 第14章 分类算法评估和比较第15章 组合多学习器第16章 增强学习出版者的话中文版序译者序前言致谢符号表第1章 绪论 1.1 什么是机器学习 1.2 机器学习的应用实例 1.2.1 学习关联性 1.2.2 分类 1.2.3 回归 1.2.4 非监督学习 1.2.5 增强学习 1.3 注释 1.4 相关资源 1.5 习题 1.6 参考文献第2章 监督学习 2.1 由实例学习类 2.2 VC维 2.3 概率逼近正确学习 2.4 噪声 2.5 学习多类 2.6 回归 2.7 模型选择与泛化 2.8 监督机器学习算法的维 2.9 注释 2.10 习题 2.11 参考文献第3章 贝叶斯决策定理 3.1 引言 3.2 分类 3.3 损失与风险 3.4 判别式函数 3.5 效用理论 3.6 信息值 3.7 贝叶斯网络 3.8 影响图 3.9 关联规则 3.10 注释 3.11 习题 3.12 参考文献第4章 参数方法 4.1 引言 4.2 最大似然估计 4.2.1 伯努利密度 4.2.2 多项密度 4.2.3 高斯(正态)密度 4.3 评价估计:偏倚和方差 4.4 贝叶斯估计 4.5 参数分类 4.6 回归 4.7 调整模型的复杂度:偏倚/方差两难选择 4.8 模型选择过程 4.9 注释 4.10 习题 4.11 参考文献第5章 多元方法 5.1 多元数据 5.2 参数估计 5.3 缺失值估计 5.4 多元正态分布 5.5 多元分类……第6章 维度旭纳第7章 聚类第8章 非参数方法第9章 决策树第10章 线性判别式第11章 多层感知器第12章 局部模型 第13章 隐马尔可夫模型 第14章 分类算法评估和比较第15章 组合多学习器第16章 增强学习 · · · · · · () "机器学习导论"试读 · · · · · ·机器学习使用实例数据或过去的经验训练计算机,以优化性能标准。当人们不能直接编写计算机程序解决给定的问题,而是需要借助于实例数据或经验时,就需要学习。一种需要学习的情况是人们没有专门技术,或者不能解释他们的专门技术。以语音识别,即将声学语音信号转换成ASCII文本为例。看上去我们可以毫无困难地做这件事,但是我们却不能解释我们是如何做的。由于年龄、性别或口音的差异,.. |
急躁不得!
非常喜欢
不错,强烈推荐!
同时细微处又有真知灼见