深度学习txt,chm,pdf,epub,mobi下载 作者:乐毅/王斌 出版社: 电子工业出版社 副标题: Caffe之经典模型详解与实战 出版年: 2016-12 页数: 344 定价: 79 装帧: 平装 ISBN: 9787121301186 内容简介 · · · · · ·《深度学习——Caffe之经典模型详解与实战》首先介绍了深度学习相关的理论和主流的深度学习框架,然后从Caffe深度学习框架为切入点,介绍了Caffe的安装、配置、编译和接口等运行环境,剖析Caffe网络模型的构成要素和常用的层类型和Solver方法。通过LeNet网络模型的Mnist手写实例介绍其样本训练和识别过程,进一步详细解读了AlexNet、VGGNet、GoogLeNet、Siamese和SqueezeNet网络模型,并给出了这些模型基于Caffe的训练实战方法。然后,《深度学习——Caffe之经典模型详解与实战》解读了利用深度学习进行目标定位的经典网络模型:FCN、R-CNN、Fast-RCNN、Faster-RCNN和SSD,并进行目标定位Caffe实战。《深度学习——Caffe之经典模型详解与实战》的最后,从著名的Kaggle网站引入... 作者简介 · · · · · ·乐毅:计算机专业硕士,现任职于某数据通信公司,高级系统工程师。负责公司深度学习技术领域的应用及相关项目,对深度学习及大数据深度挖掘具有浓厚的兴趣。擅长Caffe等深度学习框架及网络模型应用。王斌:通信与信息系统硕士,现任职于某数据通信公司,高级系统工程师。多年致力于深度学习技术的前沿研究与应用,对Caffe等深度学习框架在图像识别领域有深刻理解,承担公司多项与机器学习相关的研究工作。 目录 · · · · · ·第1章 绪论 11.1 引言 1 1.2 人工智能的发展历程 2 1.3 机器学习及相关技术 4 1.3.1 学习形式分类 4 1.3.2 学习方法分类 5 · · · · · ·() 第1章 绪论 1 1.1 引言 1 1.2 人工智能的发展历程 2 1.3 机器学习及相关技术 4 1.3.1 学习形式分类 4 1.3.2 学习方法分类 5 1.3.3 机器学习的相关技术 7 1.4 国内外研究现状 8 1.4.1 国外研究现状 8 1.4.2 国内研究现状 9 第2章 深度学习 11 2.1 神经网络模型 11 2.1.1 人脑视觉机理 11 2.1.2 生物神经元 13 2.1.3 人工神经网络 15 2.2 BP神经网络 18 2.2.1 BP神经元 18 2.2.2 BP神经网络构成 19 2.2.3 正向传播 21 2.2.4 反向传播 21 2.3 卷积神经网络 24 2.3.1 卷积神经网络的历史 25 2.3.2 卷积神经网络的网络结构 26 2.3.3 局部感知 27 2.3.4 参数共享 28 2.3.5 多卷积核 28 2.3.6 池化(Pooling) 29 2.4 深度学习框架 30 2.4.1 Caffe 30 2.4.2 Torch 31 2.4.3 Keras 32 2.4.4 MXNet 32 2.4.5 TensorFlow 33 2.4.6 CNTK 33 2.4.7 Theano 34 第3章 Caffe简介及其安装配置 36 3.1 Caffe是什么 36 3.1.1 Caffe的特点 38 3.1.2 Caffe的架构 38 3.2 Caffe的安装环境 39 3.2.1 Caffe的硬件环境 39 3.2.2 Caffe的软件环境 43 3.2.3 Caffe的依赖库 44 3.2.4 Caffe开发环境的安装 46 3.3 Caffe接口 52 3.3.1 Caffe Python接口 52 3.3.2 Caffe MATLAB接口 55 3.3.3 Caffe命令行接口 56 第4章 Caffe网络定义 58 4.1 Caffe模型要素 58 4.1.1 网络模型 58 4.1.2 参数配置 62 4.2 Google Protobuf结构化数据 63 4.3 Caffe数据库 65 4.3.1 LevelDB 65 4.3.2 LMDB 66 4.3.3 HDF5 66 4.4 Caffe Net 66 4.5 Caffe Blob 68 4.6 Caffe Layer 70 4.6.1 Data Layers 71 4.6.2 Convolution Layers 75 4.6.3 Pooling Layers 76 4.6.4 InnerProduct Layers 77 4.6.5 ReLU Layers 78 4.6.6 Sigmoid Layers 79 4.6.7 LRN Layers 79 4.6.8 Dropout Layers 80 4.6.9 SoftmaxWithLoss Layers 80 4.6.10 Softmax Layers 81 4.6.11 Accuracy Layers 81 4.7 Caffe Solver 82 Solver方法 83 第5章 LeNet模型 88 5.1 LeNet模型简介 88 5.2 LeNet模型解读 89 5.3 Caffe环境LeNet模型 91 5.3.1 mnist实例详解 91 5.3.2 mnist手写测试 103 5.3.3 mnist样本字库的图片转换 106 第6章 AlexNet模型 107 6.1 AlexNet模型介绍 107 6.2 AlexNet模型解读 108 6.3 AlexNet模型特点 111 6.4 Caffe环境AlexNet模型训练 112 6.4.1 数据准备 112 6.4.2 其他支持文件 113 6.4.3 图片预处理 113 6.4.4 ImageNet数据集介绍 113 6.4.5 ImageNet图片介绍 115 6.4.6 ImageNet模型训练 115 6.4.7 Caffe的AlexNet模型与论文的不同 124 6.4.8 ImageNet模型测试 124 第7章 GoogLeNet模型 126 7.1 GoogLeNet模型简介 126 7.1.1 背景和动机 127 7.1.2 Inception结构 127 7.2 GoogLeNet模型解读 129 7.2.1 GoogLeNet模型结构 129 7.2.2 GoogLeNet模型特点 134 7.3 GoogLeNet模型的Caffe实现 135 第8章 VGGNet模型 146 8.1 VGGNet网络模型 146 8.1.1 VGGNet模型介绍 146 8.1.2 VGGNet模型特点 147 8.1.3 VGGNet模型解读 147 8.2 VGGNet网络训练 149 8.2.1 VGGNet训练参数设置 149 8.2.2 Multi-Scale训练 149 8.2.3 测试 150 8.2.4 部署 150 8.3 VGGNet模型分类实验 150 8.3.1 Single-scale对比 150 8.3.2 Multi-scale对比 151 8.3.3 模型融合 152 8.4 VGGNet网络结构 153 第9章 Siamese模型 158 9.1 Siamese网络模型 159 9.1.1 Siamese模型原理 159 9.1.2 Siamese模型实现 160 9.2 Siamese网络训练 165 9.2.1 数据准备 165 9.2.2 生成side 165 9.2.3 对比损失函数 166 9.2.4 定义solver 166 9.2.5 网络训练 166 第10章 SqueezeNet模型 168 10.1 SqueezeNet网络模型 168 10.1.1 SqueezeNet模型原理 168 10.1.2 Fire Module 169 10.1.3 SqueezeNet模型结构 170 10.1.4 SqueezeNet模型特点 171 10.2 SqueezeNet网络实现 172 第11章 FCN模型 177 11.1 FCN模型简介 177 11.2 FCN的特点和使用场景 178 11.3 Caffe FCN解读 179 11.3.1 FCN模型训练准备 180 11.3.1 FCN模型训练 183 第12章 R-CNN模型 196 12.1 R-CNN模型简介 196 12.2 R-CNN的特点和使用场景 197 12.3 Caffe R-CNN解读 198 12.3.1 R-CNN模型训练准备 198 12.3.2 R-CNN模型训练 201 第13章 Fast-RCNN模型 217 13.1 Fast-RCNN模型简介 217 13.2 Fast-RCNN的特点和使用场景 218 13.3 Caffe Fast-RCNN解读 220 13.3.1 Fast-RCNN模型训练准备 220 13.3.2 Fast-RCNN模型训练 222 第14章 Faster-RCNN模型 239 14.1 Faster-RCNN模型简介 239 14.2 Faster-RCNN的特点和使用场景 241 14.3 Caffe Faster-RCNN解读 242 14.3.1 Faster-RCNN模型训练准备 242 14.3.2 Faster-RCNN模型训练 244 第15章 SSD模型 264 15.1 SSD模型简介 264 15.2 SSD的特点和使用场景 266 15.3 Caffe SSD解读 267 15.3.1 SSD模型训练准备 267 15.3.2 SSD模型训练 268 第16章 Kaggle项目实践:人脸特征检测 290 16.1 项目简介 290 16.2 赛题和数据 291 16.3 Caffe训练和测试数据库 293 16.3.1 数据库生成 293 16.3.2 网络对比 295 16.3.3 网络一 296 16.3.4 网络二 300 16.3.5 Python人脸特征预测程序 306 第17章 Kaggle项目实践:猫狗分类检测 311 17.1 项目简介 311 17.2 赛题和数据 312 17.3 Caffe训练和测试数据库 312 17.3.1 数据库生成 312 17.3.2 Caffe实现 316 17.3.3 CatdogNet训练 328 17.3.4 CatdogNet模型验证 332 · · · · · · () |
有点郁闷
很不一样的体验
精品!强烈推荐!!
这本书让我生气了,知道了。