Doing Bayesian Data Analysistxt,chm,pdf,epub,mobi下载 作者:John K. Kruschke 出版社: Academic Press 副标题: A Tutorial with R and BUGS 原作名: John K. Kruschke 出版年: 2010-11 页数: 672 定价: USD 89.95 装帧: Hardcover ISBN: 9780123814852
内容简介 · · · · · ·There is an explosion of interest in Bayesian statistics, primarily because recently created computational methods have finally made Bayesian analysis obtainable to a wide audience. Doing Bayesian Data Analysis, A Tutorial Introduction with R and BUGS provides an accessible approach to Bayesian data analysis, as material is explained clearly with concrete examples. The book b...
There is an explosion of interest in Bayesian statistics, primarily because recently created computational methods have finally made Bayesian analysis obtainable to a wide audience. Doing Bayesian Data Analysis, A Tutorial Introduction with R and BUGS provides an accessible approach to Bayesian data analysis, as material is explained clearly with concrete examples. The book begins with the basics, including essential concepts of probability and random sampling, and gradually progresses to advanced hierarchical modeling methods for realistic data. The text delivers comprehensive coverage of all scenarios addressed by non-Bayesian textbooks--t-tests, analysis of variance (ANOVA) and comparisons in ANOVA, multiple regression, and chi-square (contingency table analysis). This book is intended for first year graduate students or advanced undergraduates. It provides a bridge between undergraduate training and modern Bayesian methods for data analysis, which is becoming the accepted research standard. Prerequisite is knowledge of algebra and basic calculus. Author website: http://www.indiana.edu/~kruschke/DoingBayesianDataAnalysis/ -Accessible, including the basics of essential concepts of probability and random sampling -Examples with R programming language and BUGS software -Comprehensive coverage of all scenarios addressed by non-bayesian textbooks- t-tests, analysis of variance (ANOVA) and comparisons in ANOVA, multiple regression, and chi-square (contingency table analysis). -Coverage of experiment planning -R and BUGS computer programming code on website -Exercises have explicit purposes and guidelines for accomplishment
|
历史开始于人创造神,终结于人成为神
希望不会让我失望。
结合当下分析得也通俗明了易懂
不一样的观点